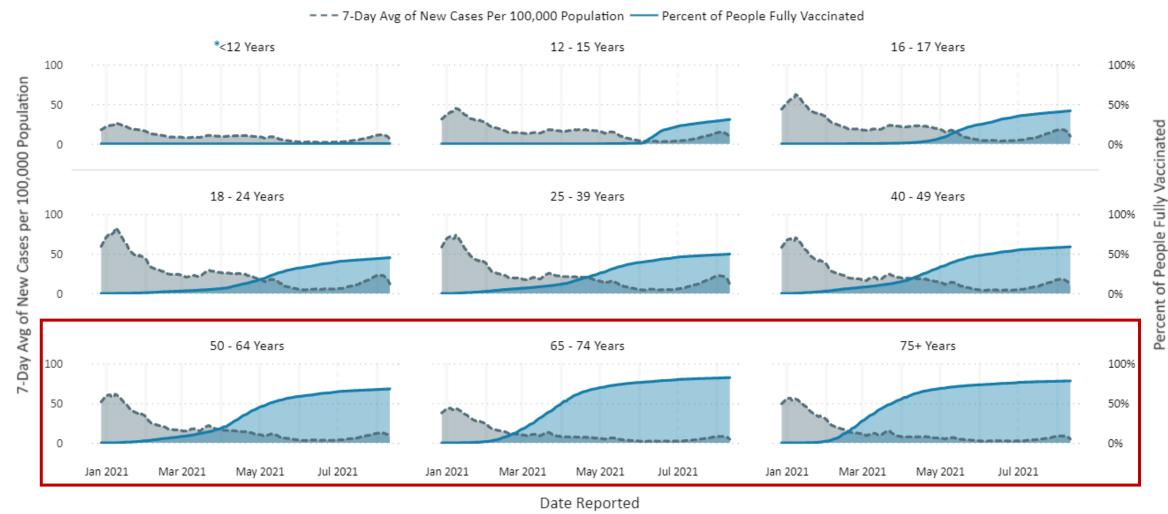

Update on Emerging SARS-CoV-2 Variants and COVID-19 vaccines

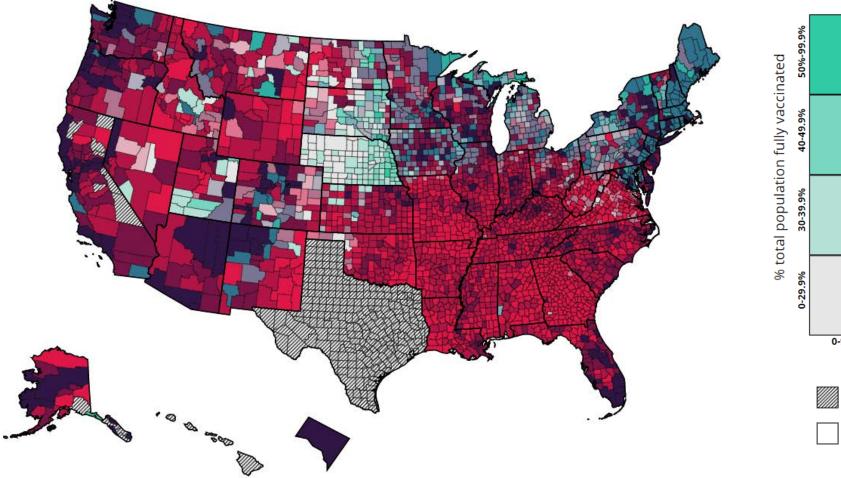
Heather Scobie, PhD, MPH ACIP Meeting August 13, 2021



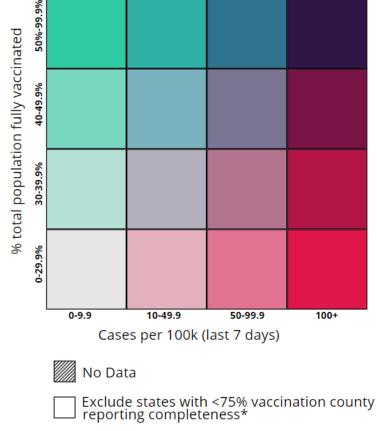
cdc.gov/coronavirus

Impact of COVID-19 Vaccination

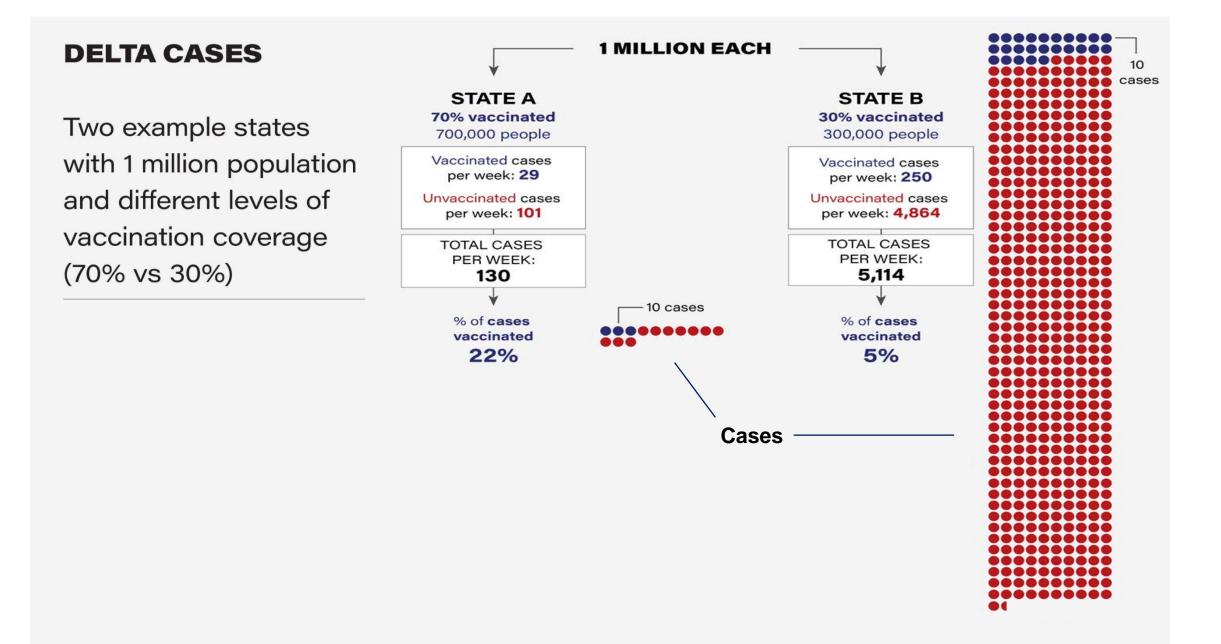
Percent of People Fully Vaccinated and Cases per 100,000 Population by Age, United States (Dec. 28, 2020 – Aug. 11, 2021)


*Currently, persons under age 12 are not eligible to be vaccinated.

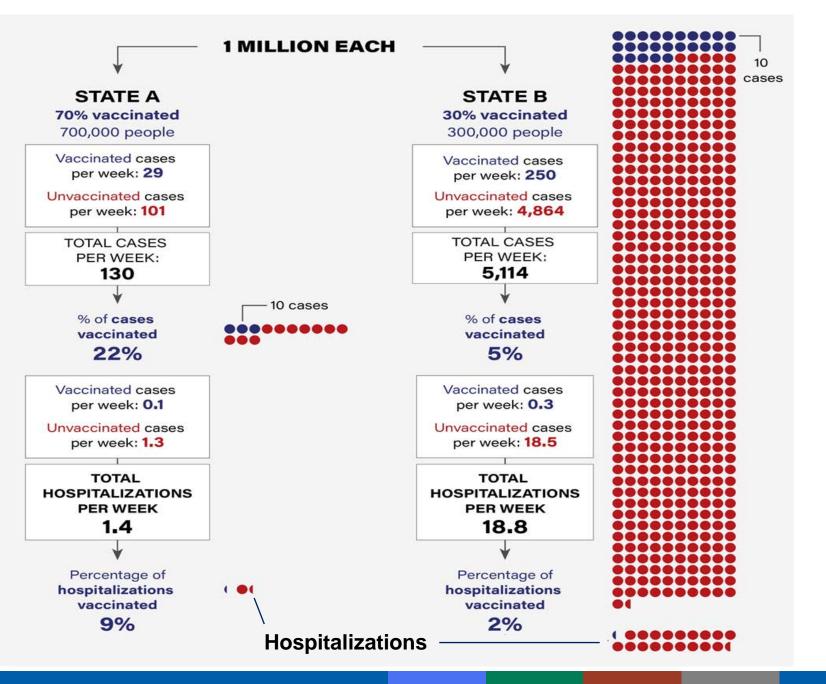
https://covid.cdc.gov/covid-data-tracker/#vaccinations-cases-trends


Last Updated: August 12, 2021

Data source: VTrcks, IIS, Federal Pharmacy Program, Federal Entities Program, U.S. Census Bureau 10-year July 2019 National Population Estimates; Visualization: CDC CPR DEO Situational Awareness Public Health Science Team


COVID-19 Reported Cases per 100,000 Population (last 7 days) and Percent of Total Population Fully Vaccinated, United States

*Counties with lower reporting completeness for vaccination coverage should be interpreted with caution.



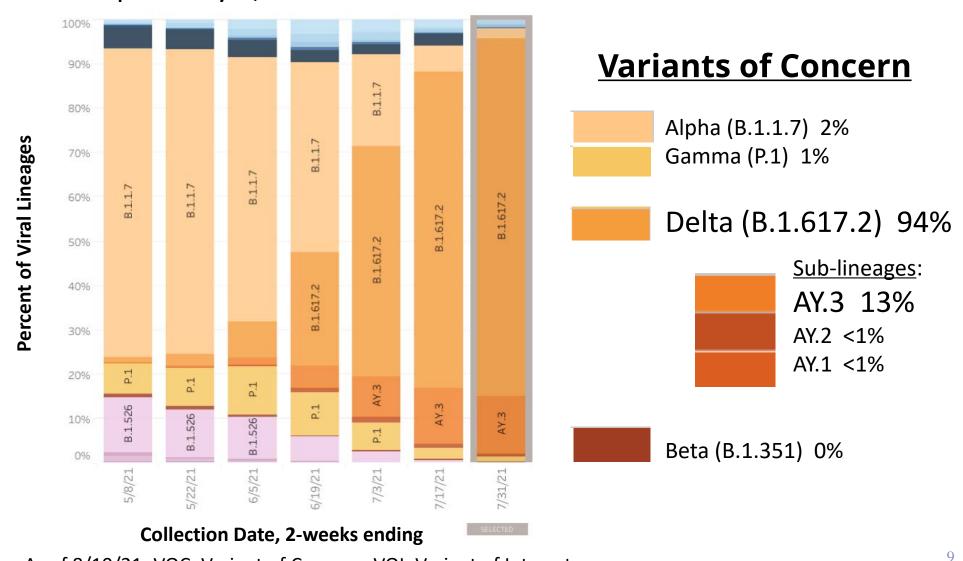
DELTA CASES AND HOSPITALIZATIONS

Two example states with 1 million population and different levels of vaccination coverage (70% vs 30%)

Higher vaccination coverage leads to fewer cases and hospitalizations, but greater % of vaccinated cases and hospitalizations

In both scenarios, cases and hospitalizations are greater among unvaccinated than vaccinated persons

Emerging SARS-CoV-2 Variants & Vaccines: What do we know now?

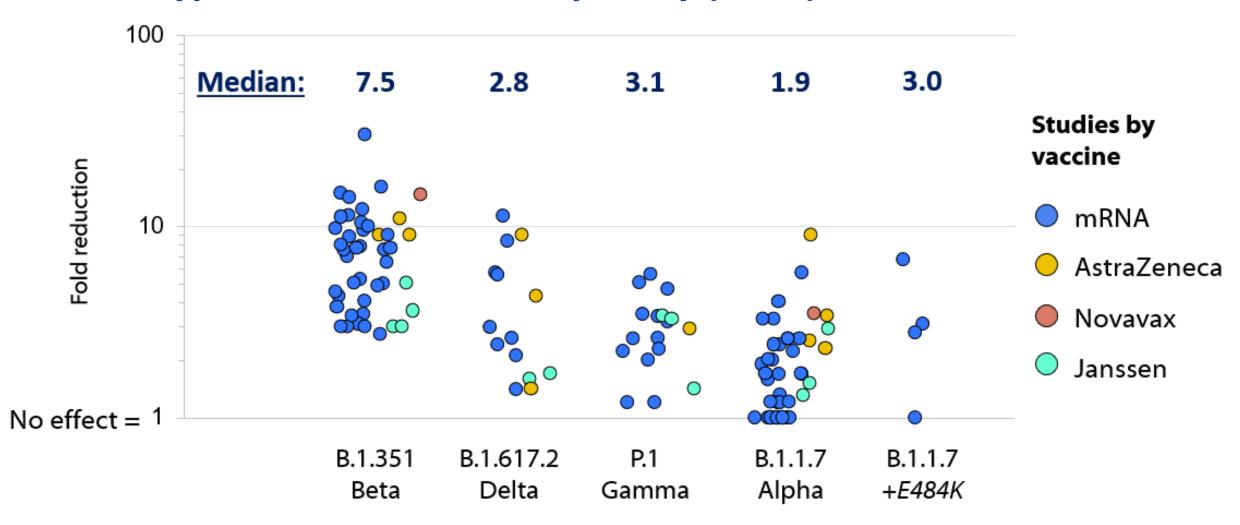


Variants of Concern

variants of concern					
WHO label	Alpha	Beta	Gamma	Delta	
PANGO Lineage	B.1.1.7	B.1.351	P.1	B.1.617.2	
First detected	United Kingdom	South Africa	Japan / Brazil	India	
No. of spike mutations	10-13	10	11	11-15	
Receptor binding domain mutations	N501Y	K417N E484K N501Y	K417T E484K N501Y	(K417N*) L452R T478K	
Attributes	 50% increased transmission Minimal impact on neutralization by convalescent or vaccine sera No impact on antibody therapies 	 50% increased transmission Significantly reduced efficacy of some antibodies Reduced neutralization by convalescent or vaccine sera 	 Significantly reduced efficacy of some antibodies Reduced neutralization by convalescent or vaccine sera 	 Increased transmission Potential reduced antibody efficacy Potential reduced neutralization by vaccine sera 	
SARSCoV-2 Variants Cla	assifications & Definitions	(*) = detected in some	e sequences but not all		

8

Estimated Proportions of SARS-CoV-2 lineages in the US


April 25 – July 31, 2021 with NOWCAST

<u>CDC COVID Data Tracker</u> As of 8/10/21; VOC=Variant of Concern; VOI=Variant of Interest

Types of evidence for monitoring vaccine efficacy

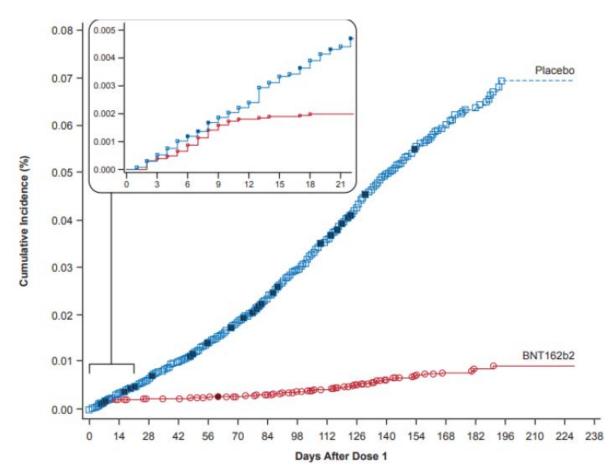
- Antibody neutralization laboratory
 - Correlate of protection not yet established
 - Good correlation of vaccine efficacy with resulting neutralizing antibody levels
 - Likely first evidence we will get on impact of variants on vaccines
- Vaccine efficacy in clinical trials and real-world effectiveness
 - Greater protection against severe disease > symptomatic illness > confirmed infection (including asymptomatic)
 - Protection against severe disease requires lower antibody levels & less affected by differences in vaccine efficacy
- Vaccine breakthrough infection

Reduced antibody neutralization activity of vaccine sera relative to wildtype/dominant strain by study (n=50)

11

Duration of immunity

- To date, available data demonstrate antibody persistence at least:
 - 8 months after COVID-19 infection
 - 6 months after 2nd mRNA vaccine dose; 8 months after receiving single Janssen dose
- May maintain long-term protection from severe illness by antigenically similar strain, even if become susceptible to mild infection
- Two studies show combined impact of waning immunity and reduced variant neutralization — ~50% protected against ancestral strain have undetectable neutralizing titers against Beta/Gamma at 6 months after Moderna vaccine
 - Small study 8 months post-receipt of Janssen vaccine minimal decline in neutralizing titers & improved protection against Beta/Gamma/Delta vs. 1-month post-vaccine


Gaebler, C. et al. Nature 591, 639–644 (2021); Dan, J. M. et al. Science 371, (2021); Choe et al. Emerg Infect Dis. 2021;27(3):928-931. ;Doria-Rose et al. N Engl J Med 2021; 384:2259-226 Khoury et al. Nat Med (2021).; Pegu et al. bioRxiv preprint; Wu et al. medRxiv preprint (2021): Luo, Hu, Letterio, medRxiv preprint (2021): Barouch et al. medRxiv preprint (2021): Thomas et al. medRxiv preprint

Pfizer vaccine 6-month efficacy

VE against infection: 91% (89, 93)				
Period after dose 2	% VE (95% CI)			
≥7 days to <2 mos	96 (94, 98)			
≥2 mos to <4 mos	90 (87, 93)			
≥4 mos to <6 mos	84 (75, 90)			

VE against severe illness: 97% (80,100)

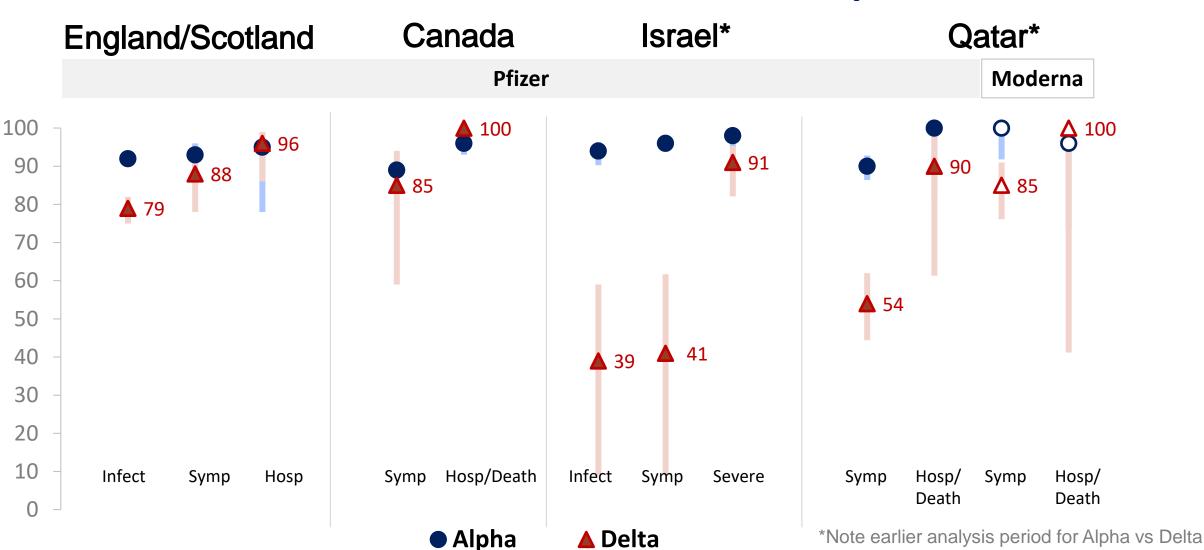
Moderna press release: 93% VE against infection at 6 months (unpublished)

Thomas et al. medRxiv preprint <u>https://doi.org/10.1101/2021.07.28.21261159</u> Moderna. https://investors.modernatx.com/news-releases/news-release-details/moderna-reports-second-guarter-fiscal-year-2021-financial

Vaccine efficacy and effectiveness (VE) against variants

- Alpha (B.1.1.7) mRNA vaccines >85% real-world VE against confirmed infection in United States and multiple other countries
- Gamma (P.1) mRNA vaccines 84%–88% real-world VE against symptomatic infection and 79% against confirmed infection when P.1 in wide circulation in Canada
- Beta (B.1.351)
 - Moderna (96%) & Pfizer (75%) real-world VE against confirmed infection in Qatar
 - Janssen **52%** VE against moderate/severe disease in South Africa (vs. 74% in US)
 - High VE against severe disease 96%–100% for mRNA vaccines in Qatar,
 73% at ≥14 days and 81% at ≥28 days for Janssen in South Africa

CDC Science Brief : https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/fully-vaccinated-people.html


Abu-Radad and Butt. NEJM (2021); Andrejko et al. medRxiv preprint (Apr 10 2021); Chemaitelly et al. Nature Med (2021)<u>https://doi.org/10.1038/s41591-021-01446-y</u>; Sandoff et al. <u>NEJM</u> (2021); Chung et al. medRxiv preprint (May 28 2021); Yassi et al. medRxiv preprint (May 25 2021)); Nasreen etal.medRxivpreprint: <u>https://doi.org/10.1101/2021.06.28.2125942</u>0

Delta variant: What we know

- Nearly twice as contagious as previous variants
- Some evidence of increased illness severity vs. previous strains in unvaccinated persons
- Greatest risk of transmission still among unvaccinated people
- Fully vaccinated people with Delta breakthrough infections can spread virus to others
 - However, vaccinated people with Delta appear to be infectious for a shorter period than unvaccinated persons with Delta

https://www.cdc.gov/coronavirus/2019-ncov/variants/delta-variant.html

Fisman & Tuite. medRxiv; Ong et al. SSRN Journal. 2021; Sheikh et al. Lancet (2021); Dagpunar J. medRxiv.; Li et al. medRxiv.; Lopez Bernal et al. NEJM (2021); Stowe et al. PHE preprint:; Riley et ab. medRxiv : Micochova et al. Research Square preprint : Musser et al. medRxiv; Brown et al. MMWR (2021): Riemersma et al. medRxiv: Chia et al. medRxiv;

Pfizer & Moderna 2-Dose Effectiveness for Alpha vs. Delta

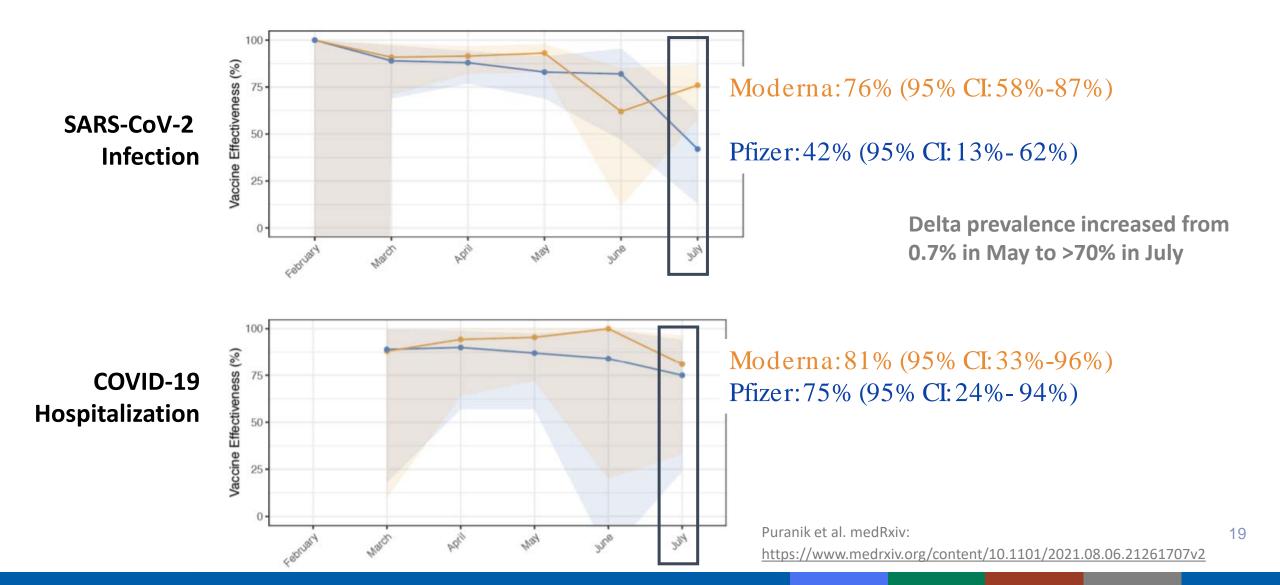
Sheikh et al. Lancet (2021): <u>https://doi.org/10.1016/S0140-6736(21)01358-1</u>; Lopez Bernal et al. medRxiv preprint; <u>https://doi.org/10.1101/2021.05.22.21257658</u>; Stowe et al. PHE preprint: <u>https://khub.net/web/phe-national/public-library/-/document_library/v2WsRK3ZlEig/view/479607266</u>; Nasreen et al.medRxiv preprint: <u>https://doi.org/10.1101/2021.06.28.21259420</u>; Haas et al Lancet (2021): <u>https://doi.org/10.1016/S0140-6736(21)00947-8</u>; Israel MOH: <u>https://www.gov.il/BlobFolder/reports/vaccine-efficacy-safety-follow-up-committee/he/files_publications_corona_two-dose-vaccination-data.pdf</u> <u>Abu-Radad and Butt. NEJM (2021); Chemaitelly et al. Nature Med (2021): Tang et al medRxiv</u>

Differences in COVID vaccination program by country with potential impact on comparability of VE results

Country	U.S.	Israel	Qatar	U.K.	Canada
Vaccines used [authorized]	Pfizer Moderna Janssen	Pfizer [Moderna]	Pfizer Moderna	Pfizer AstraZeneca [Moderna] [Janssen]	Pfizer Moderna AstraZeneca [Janssen]
Interval	3-4 weeks	3 weeks	3-4 weeks	12 weeks	16 weeks
Note	-	Tight cohort	-	Mix-and-match	

- Extended intervals between doses (12 weeks) shown to improve immunogenicity and VE for Pfizer and AstraZenaca vaccines compared with standard interval, including ages ≥80 years
- Pfizer has lower mRNA dosage and accelerated schedule (3 weeks) compared with Moderna (4 weeks)

Parry et al. <u>https://www.medrxiv.org/content/10.1101/2021.05.15.21257017v1</u>; Flaxman et al. Lancet (2021) <u>https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3873839</u>; Amirthalingam et al. <u>https://www.medrxiv.org/content/10.1101/2021.07.26.21261140v1</u>; Carazo et al. : <u>https://doi.org/10.1101/2021.07.19.21260445</u>


Declines in VE against infection

Preprint and unpublished data from Israel

- Ministry of Health analysis higher breakthrough rates and lower Pfizer VE against infection for persons vaccinated in Jan–Feb 2021 more recent months for persons aged 16–59 and ≥60 years
- Two retrospective cohort studies of persons vaccinated with Pfizer in large healthcare systems :
 - 2.3-fold increased risk for breakthrough infection among persons vaccinated with Pfizer in January vs. April 2021 (n=1.35 million)
 - Higher breakthrough infection rate (2.4% v. 1.1%, OR=2.2) among those who received 2nd dose ≥5 months ago compared to <5 months ago (n=33,993)
 - Higher magnitude of difference with increasing age

<u>Correlation of SARS-CoV-2 Breakthrough Infections to Time-from-vaccine; Preliminary Study | medRxiv</u> <u>Elapsed time since BNT162b2 vaccine and risk of SARS-CoV-2 infection in a large cohort | medRxiv</u> <u>https://www.gov.il/BlobFolder/reports/vaccine-efficacy-safety-follow-up-committee/he/files_publications_corona_two-dose-vaccination-data.pdf</u>

VE against Infection and Hospitalization July vs. Jan-May Mayo Clinic Health System, Minnesota, n=25,589

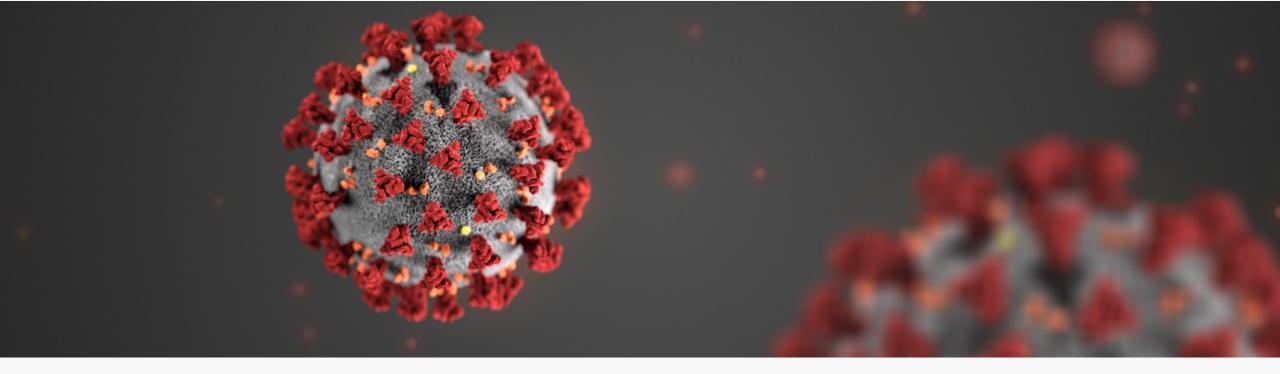
U.S. COVID-19 Vaccine Breakthrough Cases

- Despite high vaccine efficacy, vaccine breakthrough cases* are expected
 - Some will be caused by variants, even if vaccine has similar effectiveness against variants
 - CDC monitors nationwide vaccine breakthrough resulting in hospitalization or death
- As of August 2, among more than 164 million fully vaccinated in U.S., there have been 7,101 hospitalizations & 1,507 deaths with vaccine breakthrough reported to passive surveillance**
 - Among hospitalized or fatal breakthrough cases, 74% among persons aged ≥65 years
 - Variants of concern (%) among breakthrough cases similar to national genomic surveillance
- COVID-NET data on COVID-19-associated hospitalizations among aged persons ≥18 years — ~32% of all vaccinated cases are immunocompromised vs. 11% of unvaccinated cases

* Vaccine breakthrough case: Person with SARS-CoV-2 RNA or antigen detected in respiratory specimen collected ≥14 days after completing primary series of an FDA-authorized COVID-19 vaccine
 ** <u>CDC website</u> as of 8/5/21; 1,816 hospitalizations and 316 fatal cases reported as asymptomatic or not related to COVID-19.
 <u>CDC. MMWR (2021)</u>; COVID-NET: <u>https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covid-net/purpose-methods.html</u>

Summary of Preliminary Data: Implications of SARS-CoV-2 Variants of Concern on Vaccine Effectiveness

B.1.1.7 (Alpha)	 Low prevalence in United States Minimal impact on VE; attention needed for additional substitutions in receptor binding domain (RBD), e.g., E484K
B.1.351 (Beta)	 Low prevalence in United States Moderate impact on VE against infection, but appear to protect against severe disease
P.1 (Gamma)	 Low prevalence in United States Moderate impact on VE for some vaccines; more data needed
B.1.617.2 (Delta)	 High prevalence in United States Moderate impact on VE for infection, but appear to protect against severe disease; more data needed, especially for Janssen


Boosters and Second-Generation Vaccines Against SARS-CoV-2 Variants

- Manufacturers conducting booster studies of current vaccines and/or secondgeneration vaccines against Beta (B.1.351)
- Moderna preliminary phase 2 results of single 50 µg booster of authorized (mRNA-1273) and variant-specific vaccine (mRNA-1273.351)
 - Both vaccines acceptable safety; boosted immunity to wild-type, Beta, Gamma
- Pfizer has also submitted preliminary data on booster of original vaccine to FDA
- No Delta-specific booster vaccine studies shared to date

Wu et al. medRxiv preprint (May 6, 2021): <u>https://doi.org/10.1101/2021.05.05.21256716</u> <u>https://investors.modernatx.com/news-release/news-release-details/moderna-announces-positive-initial-booster-data-against-sars-cov/</u> <u>https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-initiate-study-part-broad-development</u> <u>https://www.cdc.gov/vaccines/acip/meetings/downloads/slides-2021-06/06-COVID-Oliver-508.pdf</u>

Summary

- Currently authorized vaccines offer protection against known variants important to increase vaccine uptake in eligible populations
- CDC is closely monitoring real-world vaccine effectiveness and breakthrough infections using multiple methods, populations, and outcomes
- CDC continues to monitor emerging variants prevalence and impact on disease incidence, severity, and vaccine breakthrough
- ACIP will review evidence submitted for boosters and any next-generation vaccines
- Changing landscape CDC will communicate promptly about new evidence

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

